

Catalytic Conversion of Diazocarbonyl Compounds to Imines: Applications to the Synthesis of Tetrahydropyrimidines and β -Lactams

Michael D. Mandler, Phong M. Truong, Peter Y. Zavalij, and Michael P. Doyle*

Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States

Supporting Information

ABSTRACT: The synthesis of α -carbonylimines by rhodium-(II)-catalyzed reactions of α -diazoesters and organic azides has been developed and applied in hetero-Diels—Alder reactions to form highly functionalized tetrahydropyrimidines and in a one-pot, multicomponent transformation between aryldiazoacetates, p-anisyl azide, and an enonediazoacetate to produce β -lactams in high yields and diastereoselectivities.

he selective preparation of imines in organic compounds having multiple carbonyl functional groups is a daunting task in view of the common condensation methodology employed for imine synthesis. Azides are well-known to form transition metal imido complexes ($[ML_n]$ =NR) through coordination with the metal complexes² followed by dinitrogen extrusion. The mechanism of this transformation has been a subject of continuing interest.³⁻⁵ Electrophilic metal complexes coordinate with the internal nitrogen of the azide to initiate the elimination of dinitrogen,⁵ and this mechanistic pathway is operational in catalytic metal nitrene reactions.⁶ However, there are few examples for this selective transformation with ketones or derivative functional groups, and all of them have been intramolecular reactions. Zakarian and Pelc have employed a Staudinger reduction of an azide with Me₃P for the synthesis of the $\alpha_i \gamma$ -spirobicyclic ring system of pinnatoxins and pteriatoxins, but reaction conditions (refluxing toluene) and the modest yield (51%) limit broader applicability. In their presentation of metal catalyzed intramolecular reactions of indoline diazoamides, Wee and Slobodian reported for the first time two examples of rhodium(II) acetate catalyzed conversion of a diazocarbonyl compound to an imine $(1\rightarrow 2)$ from the reaction with an internal azide (Scheme 1).8 With Wee's report as precedent, Micouin, Lecourt and co-workers employed the same transformation to prepare a surrogate of 2-deoxystreptamine 3,9 but these are the only reports for this transformation.

Scheme 1. Previous Examples of Rhodium Catalyzed Formation of Imines

$$\begin{array}{c|c} N_3 & 5 \text{ mol } \% \\ \hline N_2 & R_{h_2}(\text{OAc})_4 \\ \hline N_3 & C_6H_6, \text{ reflux} \\ \hline R = \text{CO}_2\text{Me } (75\%) \\ \hline R = \text{SO}_2\text{Ph } (\text{not isolable}) \\ \end{array}$$

With the limited number of examples of this potentially useful transformation available, we decided to investigate the scope of the reaction with a broad selection of diazocarbonyl compounds and azides, determine the optimum catalyst for this transformation, and provide examples of reaction processes that effectively utilize α -carbonylimines. The latter search has taken us to [4+2]- and [2+2]-cycloaddition processes that employ α -carbonylimines for the formation of tetrahydropyrimidines and β -lactams in high yield and with a high degree of selectivity.

Initial efforts were directed toward reactions of methyl diazoacetoacetate 4a with a stoichiometric amount of p-anisyl azide 5a catalyzed by rhodium acetate. Because diazoacetoacetates, as examples of acceptor/acceptor diazo compounds, 10 are relatively stable to reactions with Lewis acids and less selective than aryl- and vinyl-diazoacetates in metal carbene transformations, they are suitable substrates for examination of the feasibility of the transformation. Because the product formed in the transformation with azide is an α -ketoimine, its formation would demonstrate a unique advantage over traditional methods for imine formation. Reactions at room temperature were sluggish due to imine coordination with the moderately Lewis acidic Rh₂(OAc)₄, but in refluxing dichloromethane, imine 6a was produced in moderate yield (Table 1, entry 1). Alternative uses of CuPF₆ and Cu(OTf)₂ were examined but, although dinitrogen loss from 4a was observed, azide 5a remained intact (entries 2-3). Lower yields of 6a were obtained with the more soluble Rh₂(oct)₄ and with the less Lewis acidic $Rh_2(cap)_4$ (entries 4–5). A reaction performed at 80 °C in refluxing DCE provided 6a in only 45% yield (entry 6). In all cases with stoichiometric 4a and 5a, a fraction of azide 5a remained. By increasing the amount of 4a to 1.2 and 1.5

Received: November 26, 2013 Published: January 14, 2014 Organic Letters Letter

Table 1. Optimization of Imine Formation^a

entry	catalyst (mol %)	temp ($^{\circ}$ C)	solvent	yield $(\%)^b$
1	$Rh_2(OAc)_4(1)$	40	DCM	59
2	$CuPF_6$ (5)	40	DCM	NR
3	$Cu(OTf)_2(5)$	40	DCM	NR
4	$Rh_2(oct)_4(1)$	40	DCM	43
5	$Rh_2(cap)_4(1)$	80	DCE	22
6	$Rh_2(OAc)_4$ (1)	80	DCE	45
7	$Rh_2(OAc)_4$ (1)	40	DCM	68 ^c
8	$Rh_2(OAc)_4$ (1)	40	DCM	68 ^d

 a A solution of diazo compound (1.0 equiv) was added over 1 h via syringe pump to a solution containing azide (1.0 equiv) and catalyst and stirred for an additional 24 h under a nitrogen atmosphere. b Isolated yield after column chromatography. c 1.2 equiv of diazo compound was used. d 1.5 equiv of diazo compound was used.

equiv, relative to 5a, the reaction yield improved to 68% (entries 7-8).

The generality of this process was evaluated under these optimized conditions with a selection of azides and diazo compounds (Table 2). Product yields were sequentially lower with phenyl azide and *p*-nitrophenyl azide (entries 2, 3) than with *p*-methoxyphenyl azide, suggesting the importance of azide nucleophilicity on the outcome of the reaction. The reaction with benzyl azide produced imine 6d cleanly prior to workup; however, 6d was prone to isomerization on silica that formed the corresponding benzylideneimine, and only a 53%

Table 2. Reaction Scope and Limitations^a

		XXXXX 20.XXX	K	•
entry	\mathbf{R}^1	R^2	6	yield (%) ^b
1	Ac (4a)	4-MeOC ₆ H ₄	6a	68
2	Ac	Ph	6b	50
3	Ac	$4-NO_2C_6H_4$	6c	31
4	Ac	Bn	6d	53
5	Ph (4b)	$4-MeOC_6H_4$	6e	97
6	Ph	Ph	6f	90
7	Ph	$4-NO_2C_6H_4$	6g	81
8	Boc			
	C (A)	4-MeOC ₆ H ₄	6h	86
9	بن ^{ام} (4c) 4-MeOC ₆ H ₄ (4d)	4-MeOC ₆ H ₄	6i	90
10	$4-ClC_6H_4(\hat{4}e)$	4-MeOC ₆ H ₄	6j	95
11	$4-NO_2C_6H_4(4f)$	4-MeOC ₆ H ₄	6k	82
12	2-naphthyl (4g)	$4-MeOC_6H_4$	61	96
13	COOMe (4h)	4-MeOC ₆ H ₄	6m	60
14	9			
	(4i)	$4-MeOC_6H_4$	6n	65
15	отвs (4 j)	4-MeOC ₆ H ₄	60	40

[&]quot;Reactions were performed as described in Table 1. ^bIsolated yield after column chromatography.

yield of **6d** was obtained after chromatography (entry 4). With donor/acceptor carbene precursors, ¹⁰ such as phenyldiazoacetate **4b**, the reaction was complete within an hour and gave **6e** in 97% isolated yield (entry 5). With aryldiazoacetates **4** (R¹ = Ar) isolated yields were all above 81% (entries 5–12). When R¹ = COOMe, which is less electron-withdrawing than Ac, imine **6m** was obtained in 60% yield (entry 13). Diazoacetoacetate **4i** containing a remote ketone functional group gave an expected moderate yield of imine **6n** (entry 14). Enoldiazoacetate **4j**, whose metal carbene intermediate normally undergoes nucleophilic attack at the vinylogous carbon, reacted with the azide at the metal carbene carbon to give the corresponding azadiene **6o** in moderate yield (entry 15).

We envisioned that the highly functionalized 1-azadiene 60 that can be accessed via the diazo-nitrene exchange methodology would be a good candidate for the aza-Diels—Alder reaction. However, since 60 was only obtained in moderate yield from enoldiazoacetate 4j, an alternative route involving treatment of imine 6a with triethylamine and TBSOTf generated 60 in 95% yield and only required aqueous workup (Scheme 2).

Scheme 2. Alternative Route to 1-Azadiene 60

With functionalized 1-azadiene 60 in hand we discovered that 1,2,3,4-tetrahydropyrimidines 8 were readily formed in high yield via a Lewis acid catalyzed [4+2]-cycloaddition reaction between 60 and imines 7 (Table 3). Under optimized

Table 3. Synthesis of Tetrahydropyrimidines^a

entry	Ar	8	yield (%) ^b
1	C_6H_5	8a	91
2	4-BrC ₆ H ₄	8b	88
3	$4-NO_2C_6H_4$	8c	90
4	2-naphthyl	8d	82
5	$4-CH_3C_6H_4$	8e	82
6	2-ClC ₆ H ₄	8f	75
7	4-MeOC ₆ H ₄	8g	72

 $^a\mathrm{TO}$ a solution containing 60 (0.20 mmol) and imine 7 (0.24 mmol, 1.2 equiv) in DCM (1 mL) under a N_2 atmosphere, at 0 °C, was added $\mathrm{Zn}(\mathrm{OTf})_2$ (10 mol %), and the mixture was stirred for 36–48 h. $^b\mathrm{Isolated}$ yield after column chromatography.

conditions (see Supporting Information), the reaction between $\bf 6o$ and imine $\bf 7a$ catalyzed by $\bf 10$ mol $\bf \%$ Zn(OTf)₂ provided tetrahydropyrimidine $\bf 8a$ in $\bf 91\%$ yield (Table 3, entry 1).

This transformation tolerated a broad selection of aryl imines 7, including those with electron-donating, electron-withdrawing, halogen, and ortho substituents (Table 3, entries 1–7). To our knowledge, this is the first example of the aza-Diels–Alder reaction involving imines in both the diene and dienophile. This methodology provides an efficient route to highly functionalized tetrahydropyrimidines, a class of molecules

Organic Letters Letter

whose members have anti-inflammatory and antimicrobial properties. 12

In our efforts to form the imine product when enonediazoacetate 4k was reacted with azides we confirmed that this diazo compound undergoes a catalyst promoted Wolff rearrangement, first reported by Taylor and Davies, ¹³ to form ketene 9 and does not react with the azide (Scheme 3). Since 9

Scheme 3. Wolff Rearrangement of 4k and [2 + 2] Cycloaddition to β -Lactam 10a

is moderately stable under these reaction conditions, we envisioned that subsequent treatment with imine $\mathbf{6e}$ would be possible, and, indeed, [2+2]-cycloaddition between $\mathbf{9}$ and $\mathbf{6e}$ yielded β -lactam $\mathbf{10a}$ as a single diastereomer. Structural assignment of $\mathbf{10a}$ was confirmed by single crystal X-ray analysis (see Supporting Information).

Other α -carbonylimines 6 formed from diazoesters were also reacted with 9 by this application of the Staudinger reaction, ^{14,15} and these results are reported in Table 4. The

Table 4. Synthesis of β -Lactams 10^a

entry	R ¹	R^2	10	yield (%) ^b	dr (anti:syn) ^c
1	Ph	4-MeOC ₆ H ₄	10a	97	> 20:1
2	Ph	$4-NO_2C_6H_4$	10b	95	> 20:1
3	4-MeOC ₆ H ₄	4-MeOC ₆ H ₄	10c	81	> 20:1
4	$4-NO_2C_6H_4$	4-MeOC ₆ H ₄	10d	89	15:1
5	Ac	4-MeOC ₆ H ₄	10e	93	1.4:1
6	OTBS	4-MeOC ₆ H ₄	10f	85	> 20:1

"A solution containing **4k** (0.43 mmol, 1.2 equiv), imine **6** (0.36 mmol, 1.0 equiv), and Rh₂(OAc)₄ (1 mol %) in 2 mL of DCM was stirred for 1 h at 40 °C. "Isolated yield after column chromatography." Diastereoselectivity was determined by ¹H NMR spectroscopic analysis of the unpurified reaction mixture.

reaction is general toward electron-donating and -withdrawing R^1 and R^2 substituents on imine **6**, providing high yields and diastereoselectivities (Table 4, entries 1–4). When R^1 = Ac, a high yield of β -lactam was obtained but with essentially no diastereoselectivity (entry 5). When R^1 = silylenol **60**, **10f** was produced in 85% yield with dr >20:1, providing a highly functionalized β -lactam (entry 6) suitable for further elaboration.

To ascertain if the overall transformation could be performed as a one-pot reaction, phenyldiazoacetate **4b**, azide **5a**, enonediazoacetate **4k**, *p*-anisyl azide, and rhodium acetate were stirred at 40 °C for 2 h to give **10a** in remarkably high yield and diastereoselectivity (Scheme 4). This transformation

Scheme 4. One-Pot Multicomponent Synthesis of β -Lactam 10

requires highly selective and sequential dinitrogen extrusion from the diazo compounds with initial reaction with phenyl-diazoacetate to form the imine intermediate followed by the Wolff rearrangement with 4k and subsequent cycloaddition. Reaction with 4-methoxyphenyldiazoacetate 4d, also conducted at 40 °C, cleanly provided 10c in 99% yield, and 4-chlorophenyldiazoacetate 4e gave 10g in nearly quantitative yield from the reaction conducted at room temperature.

In conclusion, we have developed a mild and chemoselective process for the synthesis of imines via a formal nitrene replacement of dinitrogen by the combination of diazocarbonyl compounds and azides. The azadiene formed from enoldiazoacetate 4j undergoes highly efficient hetero-Diels—Alder reactions with imines to form tetrahydropyrimidines. The ketene formed catalytically from enonediazoacetate 4k undergoes a Staudinger reaction with α -carbonylimines to yield functionalized β -lactam derivatives. The efficiency and yield of β -lactams formed from aryldiazoacetates were nearly quantitative in multicomponent reactions with p-anisyl azide and enonediazoacetate 4k, catalyzed by dirhodium(II) acetate.

ASSOCIATED CONTENT

S Supporting Information

General experimental procedures, the X-ray crystal structure of 10a, and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mdoyle3@umd.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to the National Science Foundation (CHE1212446) for support of this research. M.D.M. thanks the Arnold and Mabel Beckman Foundation for a Beckman Scholar Award.

■ REFERENCES

(1) (a) Belowich, M. E.; Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 2003. (b) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600. (c) Nugent, T. C., Ed.; Wiley-VCH: Weinheim, Germany, 2010. (d) Patai, S. The Chemistry of the Carbon-Nitrogen Double Bond; Wiley: London, 1970. (e) Patai, S. The Chemistry of the Amino Group; Wiley: London, 1968. (f) Patai, S. The Chemistry of the Carbonyl Group; Wiley: London, 1966. (g) Layer, R. W. Chem. Rev. 1963, 63, 489.

(2) (a) Cenini, S.; La Monica, G. *Inorg. Chim. Acta* **1976**, *18*, 279. (b) Guillemot, G.; Solari, E.; Floriani, C.; Rizzoli, C. *Organometallics*

Organic Letters Letter

2001, 20, 607. (c) Ciu, N.; Cheng, A.; Peng, H.; Gao, E.; He, M. Struct. Chem. **2007**, 18, 43.

- (3) (a) Proulx, G.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 6382. (b) Fickes, M. G.; Davis, W. M.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 6384. (c) Proulx, G.; Bergman, R. G. Organometal. 1996, 15, 684. (d) Ramesha, A. R.; Bhat, S.; Chandrasekaran, S. J. Org. Chem. 1995, 60, 7682.
- (4) (a) Abu-Omar, M. M.; Shields, C. E.; Edwards, N. E.; Eikey, R. A. Angew. Chem., Int. Ed. 2005, 44, 6203. (b) Ison, E. A.; Cessarich, J. E.; Travia, N. E.; Fanwick, P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 1167.
- (5) Wu, H.; Hall, M. B. J. Am. Chem. Soc. 2008, 130, 16452.
- (6) (a) Nguyen, Q.; Sun, K.; Driver, T. G. J. Am. Chem. Soc. 2012, 134, 7262. (b) Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H. J.; Jiang, H. L.; Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2011, 133, 12264. (c) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831. (d) Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.; Zhang, X. P. Org. Lett. 2008, 10, 1995.
- (7) Pelc, M. J.; Zakarian, A. Org. Lett. 2005, 7, 1629.
- (8) Wee, A. G. H.; Slobodian, J. J. Org. Chem. 1996, 61, 2897.
- (9) Blond, A.; Moumné, R.; Bégis, G.; Pasco, M.; Lecourt, T.; Micouin, L. Tetrahedron Lett. 2011, 52, 3201.
- (10) (a) Zhang, Z. H.; Wang, J. B. Tetrahedron 2008, 64, 6577.
- (b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
- (c) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998.
- (11) For reviews of the aza-Diels—Alder reaction, see: (a) Memeo, M. G.; Quadrelli, P. Chem.—Eur. J. 2012, 18, 12554. (b) Buonora, P.; Olsen, J.; Oh, T. Tetrahedron 2001, 57, 6099.
- (12) (a) Darandale, S. N.; Pansare, D. N.; Mulla, N. A.; Shinde, D. B. Bioorg. Med. Chem. Lett. 2013, 23, 2632. (b) Dubernet, M.; Duguet, N.; Colliandre, L.; Berini, C.; Helleboid, S.; Bourotte, M.; Daillet, M.; Maingot, L.; Daix, S.; Delhomel, J.; Morin-Allory, L.; Routier, S.; Walczak, R. ACS Med. Chem. Lett. 2013, 4, 504.
- (13) (a) Wolff, L. Liebigs Ann. Chem. 1902, 325, 129. (b) Taylor, E. C.; Davies, H. M. L. Tetrahedron Lett. 1983, 24, 5453. (c) Collomb, D.; Doutheau, A. Tetrahedron Lett. 1997, 38, 1397.
- (14) For reviews on the Staudinger reaction, see: (a) Tuba, R. Org. Biomol. Chem. **2013**, 11, 5976. (b) Fu, N.; Tidwell, T. T. Tetrahedron **2008**, 64, 10465. (c) Cossío, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res. **2008**, 41, 925.
- (15) For reviews on ketene chemistry and applications to β -lactam formation, see: (a) Allen, A. D.; Tidwell, T. T. Chem. Rev. **2013**, 113, 7287. (b) Brandi, A.; Cicci, S.; Cordero, F. M. Chem. Rev. **2008**, 108, 3988.